

Concealed Insulation Defects

SHOULD YOU WORRY ABOUT THINGS YOU CANNOT SEE?

Disclaimer

SPFA does NOT warrant, represent, or guarantee the safety practices or workmanship of these materials used by any contractor and specifically disclaims any and all liability and responsibility for any injuries, losses, or damages of any kind or nature arising out of a contractor's performance, materials used, or the contractor's use of or reliance upon this document and its contents.

Copyright

© 2016 - Spray Polyurethane Alliance (SPFA). All rights reserved.

Do not copy, distribute or re-use this presentation without written permission of SPFA.

Richard S. Duncan, Ph.D., P.E. Technical Director, Spray Polyurethane Foam Alliance

Rick is currently Technical Director for the Spray Polyurethane Foam Alliance. Prior to joining SPFA, he was the Senior Marketing Manager for Honeywell's Spray Foam Insulation business from 2006 to 2008. From 1997 to 2006, he was the Global Program Director for CertainTeed/Saint-Gobain Insulation's New Materials and Applications Portfolio. From 1989 to 1997 he was a Visiting Assistant Professor of Mechanical Engineering at Bucknell University. He holds a Ph.D. in Engineering Science and Mechanics from The Pennsylvania State University, MSME from Bucknell and a BSME from the University of Maryland. Rick is a Registered Professional Engineer in Pennsylvania and is a certified BPI Building Analyst.

Introduction

This presentation will discuss how to identify both visible and concealed insulation defects, along with their causes and remedies. If will also discuss the importance of these defects as they relate to thermal performance of the building envelope.

Overview

Visible and Concealed Insulation Defects

- Identification
- Cause
- Remedy

Inspection Techniques for Concealed Defects

Impact of Concealed Defects

- Thermal Performance
- Air-Barrier Performance (SPF)

Summary

Questions

Insulation Defects: Inset Stapling

concealed rear gap from dragging along side of stud; compressed insulation in front

Inset Stapling

2016 Conference Scottsdale, AZ Feb 29 - Mar 2

FACE STAPLED

Rear gap from dragging during installation 0

0

0

Cause:

Concern:

Identification:

entire length

Convection cell development on both sides of batt 0

Front gap from stapling tab to side of stud or joist

Visible front air gap on sides of batt running along

Concealed rear air gap along rear sides of batt along

entire length of stud or joist

Compressed insulation on sides of batt 0

Remedy:

Don't inset staple, or use tab-less friction-fit batts 0

Insulation Defects: Friction-Fit Batts

Friction-Fit Batts

Identification:

 <u>Concealed</u> rear air gap along rear sides of batt along entire length

Cause:

• Rear gap from dragging during installation

Concern:

- Missing insulation in cavity corners
- Compressed insulation along sides of batt
- Not as serious issue as inset stapling in terms of convection cell development

Remedy:

• Use loose-fill insulation

Insulation Defects: **Cavity Wiring and Piping**

visible air gap with

insulation behind

compressed

concealed air gap without insulation behind conduit. piping and wiring; compressed insulation in front

insulation behind box visible air gap without insulation In front of conduit. piping and wiring; compressed

Piping and Wiring

Identification:

- Concealed air gap behind outlet boxes, wiring and 0 piping
- Visible air gap when insulation is compressed behind 0 wiring and piping

Cause:

- Improper trimming of batt
- Hasty installation procedures 0

Concern:

- Missing insulation 0
- Compressed insulation 0

Remedy:

Installer training to cut and fill batts into these areas 0

Insulation Defects: Poor SPF Adhesion

Poor Adhesion to Substrate

Identification:

- <u>Concealed</u> air gap between insulation and sheathing
- Typically ¼" to ½" thick gap
- Most common with ocSPF

Cause:

- Moisture on substrates
- Application technique and equipment setup

Concern:

• Missing insulation R-value

Remedy:

- Installer training
- Can be immediately repaired by injection procedure

Insulation Defects: Stud/Sheathing Voids

concealed rear gap from rising foam dragging along side of stud;

Poor wetting of foam on side of stud creates weak bond that MAY eventually release, causing foam to shrink away from stud

Identification:

- <u>Concealed</u> air gap between studs and sheathing
- Can occur with ccSPF or ocSPF

Cause:

- Improper spray pattern (ocSPF)
- Improper application technique

Concern:

- Poor or zero adhesion to stud wall
- May result in delamination and shrinkage (ccSPF)

Remedy:

- Proper spray pattern (ocSPF)
- Use of "picture-framing" technique

Insulation Defects: Cavity Wiring and Piping

Junction/Outlet Box

Identification:

- <u>Concealed</u> air gap between junction box and sheathing
- Can occur with ccSPF or ocSPF
- Inspect/probe wire openings of outlet box

Cause:

- Improper application
- Hasty installation procedures

Concern:

- Missing insulation R-value
- Air leakage if box is mounted on a stud with a sheathing seam

Remedy:

- Installer training
- Can inject can foam into outlet box openings

Insulation Defects: Underfilled Cavities

Slightly Underfilled Cavity

Identification:

- Visible air gap between insulation and gypsum board
- Can occur with ocSPF to minimize trip waste

Cause:

- Incomplete cavity fill
- Used to reduce ocSPF scrap

Concern:

• Missing insulation R-value (?)

Remedy:

• It depends on extent and depth of underfill

Insulation Defects: Concave Trimming

Concave Face Trimming

Identification:

- Visible air gap between insulation and gypsum board
- Can occur with ocSPF during trimming

Cause:

 Flexible trimming saw with too much pressure

Concern:

• Missing insulation R-value (?)

Remedy:

- Modify trimming technique
- Use different trimming equipment

Inspection and Detection Techniques: Non-Destructive

Courtesy Mason Knowles Consulting

IR Imaging

Emphasizes surface defects (cold spots not warmed by interior surface convection)

May not show hidden interior defects

Most hidden SPF delamination defects can be detected by pushing or knocking on insulation.

Impact of Concealed Defects: Thermal Performance of Air-Gaps

2005 ASHRAE Handbook of Fundamentals, Ch 25 Table 3 (Robinson et al. 1954)

- R-value versus thickness of air gap (0.5" to 3.5") for heat flow in different directions
- Function of mean air gap temperature and temperature difference, emissivity of gap surfaces
- Assumes air gap is <u>sealed against air leakage</u>

Impact of Concealed Defects: Thermal Performance of Air-Gaps

Convert to R-value per inch thickness versus gap thickness

- R-value/inch increase with decreasing gap thickness, approaching that of insulation as gap size decreases below ½"
- Do small air gaps in the insulation actually reduce R-value?

Impact of Concealed Defects: Thermal Performance of Air-Gaps

SPFA-funded C1363 Testing at ATI (2007)

- ocSPF was applied to nearly fill the cavity and then trimmed (see photo below)
- Under-filled area about 40-50% of cavity surface
- Average under-fill was about 0.35"
- Full-cavity R-value: R3.6/inch x 3.5" = R12.6
- C1363 measured R-value: R12.35
- Calculated R-value for R air-gap=0:
 - R3.6/inch x (3.5-0.35) = R11.34 over half cavity area
 - R11.34*50%+R12.6*50% = R11.95
- Calculated R-value for R air-gap=R2.5/inch:
 - R3.6/inch x (3.5-0.35)+ R2.5/inch x (0.35) = R12.21 over half cavity area
 - R12.21*50%+R12.6*50% = R12.41

Small air gap has measureable R-value and should not be assumed zero.

Building Science Corp Thermal Metric Project (June 2015)

- Eight typical wood-frame walls constructed
- Thermal performance measured with advanced guarded hotbox apparatus
- Like C1363, but includes effect of air leakage and interaction between air leakage and R-value
- Thermal performance of real-world wall assemblies under extreme temperature conditions
- Shows impact of inset stapling, delamination of ocSPF.

Wall	Inculation	١	NINTER (-1°	F) ENERGY FL	OW (Btu/hr)	SUMMER (+108°F) ENERGY FLOW (Btu/hr)					
ID	Insulation	value	Sealed	As-Built	InFil+ExFil	InFil	Hole	Sealed	As-Built	InFil+ExFil	InFil	Hole
2	R13 FG Inset Stapled	13.0	466	524	619	835	889	270	303	340	437	465
3	R13 FG Face Stapled	13.0	442	494	586	777	821	285	297	357	454	457
4	Damp Spray Cellulose		463	508	566	713	745	260	298	320	386	378
5	Open-Cell SPF	12.6	475	529	548	594	568	286	317	340	371	344
5-II	Open-Cell SPF	12.6	439	490	491	502	414	278	302	302	327	257
6	Closed-Cell SPF	12.0	452	485	551	638	612	255	281	310	338	296
7	R13+1"XPS-ci	13.0 (+5)	357	403	505	690	718	241	259	332	433	407
8	R21 FG Batt Unfaced	21.0	344	401	490	718	776	200	247	242	338	378
	Sealed	C <u>ontinuous</u> P	E sheets insta	alled inside	drywall and o	utside shea	thing (CONT	ROL). Both si	des sealed.	No pressure o	difference a	pplied.
	As-Built	See wall pane	el description	; all PE shee	ets removed							
	InFil+ExFil	Same as 'As-B	uilt' with 10 l	Pa induced p	positive press	ure on wind	lward wall ar	nd 10 Pa indu	ed negative	e pressure on	leeward wa	all
	InFil	Same as 'As-B	uilt' with 10 l	Pa induced r	negative pres	sure on all v	valls from ex	haust fan				
	Hole	Prediction of	energy losse	s from ṁ•c _p •	•∆T calculatio	n based on i	neasured air	leakage				

8' x 12' wall panels tested											
Frame	Interior	Exterior	WRB	Ext. Cladding							
2x4-16	1/2" GWB	7/16" OSB	SBPO wrap	vinyl siding							
2x4-16	1/2" GWB	7/16" OSB	SBPO wrap	vinyl siding							
2x4-16	1/2" GWB	7/16" OSB	SBPO wrap	vinyl siding							
2x4-16	1/2" GWB	7/16" OSB	SBPO wrap	vinyl siding							
2x4-16	1/2" GWB	7/16" OSB	SBPO wrap	vinyl siding							
2x4-16	1/2" GWB	7/16" OSB	SBPO wrap	vinyl siding							
2x4-16	2x4-16 1/2" GWB 1" XPS none vinyl siding										
2x6-16	1/2" GWB	7/16" OSB	SBPO wrap	vinyl siding							
All GWB and OSB shimmed to provide controlled air gap											

RESORTAL EVERY SERVICES NETWORK 2016 Conference Scottsdale, AZ Feb 29-Mar 2

V	Vall	Inculation	Cavity R-		WINTER (-1°	F) ENERGY FL	OW (Btu/h	r)	SUMMER (+108°F) ENERGY FLOW (Btu/hr)						
	ID	Insulation	value	Sealed	As-Built	InFil+ExFil	InFil	Hole	Sealed	As-Built	InFil+ExFil	InFil	Hole		
	2	R13 FG Inset Stapled	13.0	466	524	619	835	889	270	303	340	437	465		
	3	R13 FG Face Stapled	13.0	442	494	586	777	821	285	297	357	454	457		
	4	Damp Spray Cellulose		463	508	566	713	745	260	298	320	386	378		
	5	Open-Cell SPF	12.6	475	529	548	594	568	286	317	340	371	344		
5	5-11	Open-Cell SPF	12.6	439	490	491	502	414	278	302	302	327	257		
	6	Closed-Cell SPF	12.0	452	485	551	638	612	255	281	310	338	296		
	7	R13+1"XPS-ci	13.0 (+5)	357	403	505	690	718	241	259	332	433	407		
	8	R21 FG Batt Unfaced	21.0	344	401	490	718	776	200	247	242	338	378		
		Sealed	C <u>ontinuous P</u>	E sheets inst	alled inside	drywall and c	outside shea	athing (CONT	ROL). Both si	des sealed.	No pressure o	difference a	applied.		
		As-Built	See wall pane	descriptior	n; all PE shee	ts removed									
		InFil+ExFil	Same as 'As-B	Same as 'As-Built' with 10 Pa induced positive pressure on windward wall and 10 Pa induced negative pressure on leeward wall											
		InFil	Same as 'As-B	uilt' with 10	Pa induced r	negative pres	sure on all	walls from ex	haust fan						
		Hole	Prediction of	energy losse	s from ṁ•c _p •	ΔT calculatio	n based on	measured air	rleakage						

Small (5%) differences between inset and face stapled batts

8' x 12' wall panels tested										
Frame	Interior	Exterior	WRB	Ext. Cladding						
2x4-16	1/2" GWB	7/16" OSB	SBPO wrap	vinyl siding						
2x4-16	1/2" GWB	7/16" OSB	SBPO wrap	vinyl siding						
2x4-16	1/2" GWB	7/16" OSB	SBPO wrap	vinyl siding						
2x4-16	1/2" GWB	7/16" OSB	SBPO wrap	vinyl siding						
2x4-16	1/2" GWB	7/16" OSB	SBPO wrap	vinyl siding						
2x4-16	1/2" GWB	7/16" OSB	SBPO wrap	vinyl siding						
2x4-16	1/2" GWB	1" XPS	none	vinyl siding						
2x6-16	1/2" GWB	7/16" OSB	SBPO wrap	vinyl siding						
All GWB and OSB shimmed to provide controlled air gap										

1	Wall	Inculation	Cavity R-	1	WINTER (-1°	F) ENERGY FL	OW (Btu/hı	·)	SUMMER (+108°F) ENERGY FLOW (Btu/hr)					
	ID	Insulation	value	Sealed	As-Built	InFil+ExFil	InFil	Hole	Sealed	As-Built	InFil+ExFil	InFil	Hole	
	2	R13 FG Inset Stapled	13.0	466	524	619	835	889	270	303	340	437	465	
	3	R13 FG Face Stapled	13.0	442	494	586	777	821	285	297	357	454	457	
	4	Damp Spray Cellulose		463	508	566	713	745	260	298	320	386	378	
	5	Open-Cell SPF	12.6	475	529	548	594	568	286	317	340	371	344	
	5-II	Open-Cell SPF	12.6	439	490	491	502	414	278	302	302	327	257	
	6	Closed-Cell SPF	12.0	452	485	551	638	612	255	281	310	338	296	
	7	R13+1"XPS-ci	13.0 (+5)	357	403	505	690	718	241	259	332	433	407	
	8	R21 FG Batt Unfaced	21.0	344	401	490	718	776	200	247	242	338	378	
		Sealed	C <u>ontinuous P</u>	E sheets inst	alled inside	drywall and o	utside shea	athing (CONT	ROL). Both si	des sealed.	No pressure	difference a	applied.	
		As-Built	See wall pane	el descriptior	n; all PE shee	ts removed								
		InFil+ExFil	Same as 'As-B	Built' with 10	Pa induced p	oositive press	ure on wind	dward wall a	nd 10 Pa indu	ced negative	e pressure on	leeward wa	all	
		InFil	Same as 'As-B	Built' with 10	Pa induced r	negative press	sure on all v	walls from ex	khaust fan					
		Hole	Prediction of	energy losse	s from ṁ•c _p	ΔT calculatio	n based on	measured air	r leakage					

Larger (8%) differences between ocSPF with large gap (Wall 5) and small gap (Wall 5-II)

Small ocSPF gap performance comparable to other insulations installed without defects...Small gaps not important!

2016 Conference Scottsdale, AZ Feb 29-Mar 2

Summary

- Cavity insulations can have insulation defects when installation best-practice is not followed
- Defects may be visible or concealed
- Most defects, when detected, can be repaired
- There are non-destructive means to find concealed defects in cavity insulation
- Cracks and gaps in cavity insulation may not affect cavity R-value, depending on defect size.

Wall	EnormyLoss	Clear Wall	WINTER (-1°F) ASSEMBLY R-VALUE						SUMMER (+108°F) ASSEMBLY R-VALUE					
ID	Ellergy LUSS	R-value	Sealed	As-Built	ExFil	InFil	Avg ExIn	Sealed	As-Built	ExFil	InFil	Avg ExIn		
2	R13 FG Inset Stapled	13.0	0.97	0.89	1.15	0.55	0.85	0.84	0.77	0.97	0.53	0.75		
3	R13 FG Face Stapled	13.0	1.01	0.94	1.17	0.59	0.88	0.79	0.80	0.91	0.51	0.71		
4	Damp Spray Cellulose	13.0	0.96	0.91	1.11	0.64	0.88	0.86	0.78	0.93	0.60	0.77		
5	Open-Cell SPF	12.8	0.93	0.86	0.90	0.76	0.83	0.79	0.74	0.75	0.63	0.69		
5-11	Open-Cell SPF	12.8	1.02	0.95	0.97	0.92	0.95	0.83	0.77	0.86	0.73	0.80		
6	Closed-Cell SPF	12.9	1.01	0.98	1.02	0.74	0.88	0.90	0.85	0.84	0.69	0.77		
7	R13+1"XPS-ci	17.6	0.95	0.87	1.10	0.51	0.80	0.72	0.69	0.77	0.41	0.59		
8	R21 FG Batt Unfaced	18.9	0.95	0.83	1.27	0.46	0.87	0.82	0.68	1.17	0.49	0.83		
	Sealed	C <u>ontinuous</u>	PE sheets ins	stalled inside	drywall and	l outside she	eathing (CON	TROL). Both	sides sealed.	No pressur	e difference	applied.		
	As-Built	All PE sheet	s removed. I	No pressure d	lifference a	oplied.								
	ExFil	Same as 'As-	Built' with 10	0 Pa induced	positive pre	ssure on wa	II							
	InFil	Same as 'As-	Built' with 10	0 Pa induced	negative pro	essure on w	all							
	Hole	Prediction o	f energy loss	es from ṁ•c,	■∆T calculat	ion based or	n measured ai	ir leakage						

